Python ML/AI Engineer( Itransition )
Описание
Sofi y a P ova rg o
Ph on e : + 3 75 4 4 7 6 4 1 6 4 3
Em ail : s o fiy ap ova rg o @ gm ail.c o m
Lo catio n : M in sk
P ort fo li o : h ttp s:/ /g it h ub .c o m /S o fiy aP o va rg o ?ta b =re p osit o rie s
C O NTA CTABO UT M EAppli e d C om pute r S cie n ce s tu d en t ( Y e ar 2 ) a t t h e F a c u lt y o f A ppli e d M ath em atic s a n d In fo rm atic s,
sp ec ia li z in g in M ac h in e L e arn in g a n d D ata S cie n ce. D eve lo p in g e xp ert is e t h ro ugh h an d s- o n
exp erie n ce in K ag gle c o m petit io ns a n d h ac ka th o ns ( O ZO N t e c h 2 0 25 q uali t y c o ntro l, A I a ss is ta n t).
K ag gle c o ntib uto r.
H ARD S K IL LS M ac h in e L e arn in g
N atu ra l L a n gu age P ro cessin g & L a rg e L a n gu age M od els
D eep L e arn in g
Tim e S erie s
C om pute r V is io n
M ath em atic s
D ata A naly tic s
P yth o n
G it
S Q L
Basic s o f S ta tis tic s, S te p ik , B io in fo rm atic s In stit u te
D ata V is u ali z a tio n, K ag gle
I n tro d uctio n t o D ata S cie n ce a n d M ac h in e L e arn in g, S te p ik , B io in fo rm atic s In stit u te
D eep L e arn in g, D eep L e arn in g S ch o ol, M osc o w In stit u te o f P hysic s a n d T e c h no lo gy ( M IP T)
M ac h in e L e arn in g C ours e , F A M CS B SU
C O URSES Pro gra m min g L a n gu age s:
P yth on
SQ L
C++ ( B asic ): U nd ers ta n d in g o f O OP a n d a lg o rit h m s
Mac h in e L e arn in g & M LO ps:
C la ssic al M L: S cik it - le arn , C atB oost, X G Boost, L ig h tG BM ( fu ll c yc le : f r o m E D A t o m od el
d ep lo y m en t)
H yp erp ara m ete r O ptim iz a tio n : O ptu na, H yp ero p t
M LO ps: M Lflo w , D VC , b asic D ocke r
D eep L e arn in g & C om pute r V is io n :
Fra m ew ork s: P yTo rc h , T e n so rF lo w , K e ra s, T o rc h V is io n
A rc h it e ctu re s: C NNs ( R e sN et, E ffic ie n tN et), b asic u nd ers ta n d in g o f T ra n sfo rm ers f o r C V
N atu ra l L a n gu age P ro cessin g ( N LP ) & L a rg e L a n gu age M od els ( L L M s):
N LP L ib ra rie s: N LT K , S p aC y, H uggin g F a c e t ra n sfo rm ers
L LM s: P ra c tic al e xp erie n ce w it h O pen A I A PI, prompt e n gin eerin g, f in e-tu nin g o f s m alle r m od els
( e .g ., B ER T, D is tilB ER T) f o r t e xt c la ssif ic atio n
R A G B asic s: U nd ers ta n d in g o f t h e R etrieval- A ugm en te d G en era tio n c o ncep t
T E C HNIC AL S K IL LSMach in e L e arn in g E n g in eer/ A I E n g in eer
Data E n gin eerin g & D ata b ase s: P o stg re S Q L, S Q Lit e
D ata V is u ali z a tio n : M atp lo tli b , Seab orn , Plo tly , Plo tly Exp re ss , Stre am li t , Exc el/ G oogle
S heets
V ers io n C on tro l & C olla b ora tio n : G it H ub , G it L a b , G it
W eb F ra m ew ork s : S tre am li t , F a stA PI ( fo r c re atin g M L A PI e n d p oin ts ), T kin te r, A io gra m
M ath em atic al F o und atio n: L in ear A lg e b ra , P ro b ab ili t y & S ta tis tic s, M ath em atic al A naly sis ,
D is c re te M ath em atic s, O ptim iz a tio n M eth o d s, D if fe re n tia l E q uatio ns
La n gu age s:
E n gli s h : B 1- B 2– t e c h nic al d ocu m en ta tio n r e ad in g, c o m munic atio n
R ussia n : N ativ e
P R O JE C TSYo u Tu b e v id eo s u m mary A n a p pli c atio n f o r s u m mariz in g c o nte n t f r o m Y o uTu b e v id eo s a n d w eb sit e s u sin g m od ern A I
te c h no lo gie s.
C re d it S c o rrin gBuild in g a s c o rin g m od el f o r t h e d ata se t h tt p s:/ / w w w.k a g gle .c o m /d ata se ts /la o ts e /c re d it - ris k -
d ata se t a s p art o f t h e M ac h in e le arn in g c o urs e
W ate r P u m pED A a n d b re akd ow n c la ssif ic atio n m od el b ase d o n s e n so r in d ic ato rs ( t im e s e rie s) o f a w ate r
p um p u sin g L S TM
C ar p ric e p re d ic tio n Pars in g d ata se t a n d c le an in g , R e atu re E n gin eerin g, E D A , M od el M APE ( 5 % )M usic g e n re c la ssif ic atio nap pli c atio n o n S tre am li t f o r d ow nlo ad in g a n d a n aly zin g a u d io f ile s.
M usic g e n re c la ssif ie r m od ule b ase d o n t h e H ugg in gFa c e m od el c la ssif ie s m usic b y g e n re a n d
m ake s r e c o m men d atio ns
A I a ssis ta n t C RM hac ka th o n
7 августа, 2016
Дмитрий
Город
Минск
Возраст
32 года (17 июня 1993)
21 августа, 2016
Екатерина
Город
Минск
Возраст
41 год (22 мая 1984)
28 июля, 2016
Дмитрий
Город
Минск
Возраст
47 лет (18 февраля 1978)